opML (Optimistic Machine Learning), invented and developed by ORA, introduces a groundbreaking approach to integrating machine learning with blockchain technology. By leveraging similar principle of optimistic rollups, opML ensures the validity of computations in a decentralized manner. This framework enhances transparency and fosters trust in machine learning inference by allowing for onchain verification of AI computation.. [1]
OpML is comprised from the following key components:
Fraud Proof Virtual Machine (Off-chain VM): A robust off-chain engine responsible for executing machine learning inference. This component executes machine learning inference, generating new VM states as outputs. When discrepancies occur, manifested as different VM states, the MIPS VM employs a bisection method to pinpoint the exact step, or instruction, where the divergence begins.
opML Smart Contracts (On-chain VM) : Utilized for the verification of computational results, ensuring the accuracy of the off-chain computation. These contracts allow the execution of a single MIPS instruction, enabling the on-chain environment to verify specific steps in the computation process. This capability is vital for resolving disputes and ensuring the integrity of the off-chain computation.
Fraud Proofs: In the event of a dispute, fraud proofs generated by the verifier serve as conclusive evidence, illustrating the discrepancy in computation and facilitating the resolution process through the opML smart contracts.
Verification game is the process where two or more parties are assumed to execute the same program. Then, the parties can challenge each other with a pinpoint style to locate the disputable step. This step is sent to the smart contract for the verification.
For the system to work as intended it's important to ensure:
The requester first initiates an ML service task.
The server then finishes the ML service task and commits results on chain.
The verifier will validate the results. Suppose there exists a verifier who declares the results are wrong. It starts a verification game with verification game (bisection protocol) with the server and tries to disprove the claim by pinpointing one concrete erroneous step.
Finally, arbitration about a single step will be conducted on smart contract.
Represents an extension of single-phase verification game, which allows for a better utilization of computing resources.
Single phase verification game cross-compiles the whole ML inference code into the Fraud Proof VM instructions. This method is less efficient than the native execution (doesn't utilize the full potential of GPU/TPU acceleration and parallel processing). The Fraud Proof VM also has limited memory, which prevents loading of large models into the memory directly.
To address the issues above, multi-phase verification game introduces the following properties:
编辑者
编辑日期
June 26, 2024